The role of light in the growth and development of plants Light sensitivity curve of the human eye Light sensitivity curve of plants Photosynthesis process For the human eye, light is the visible part of electromagnetic radiation. Most lighting products are developed for human application. For these purposes, the intensity of visible light is expressed in lux. Lux is a photometric unit and is based on the average sensitivity of the human eye. The sensitivity is maximised at green/yellow (555nm) and declines towards longer (red) and shorter (blue) wavelengths. A lux meter is corrected for this specific eye sensitivity. For horticulture, natural daylight (global radiation) is in most cases measured in terms of energy (J or W) with a solar meter. This meter is generally positioned on top of the greenhouse. The value of global radiation is important for climate and humidity control in the greenhouse. ## Growth Light Plants have a completely different sensitivity for colours of light than the human eye. For plant growth, it is important to define light as small light particles, also called photons or quantum. The energy content of photons is different depending on wavelength (colour of light). For one W of energy, almost twice as many red photons can be produced compared to blue. In addition to this, plants are most efficient using the red part of the light and less efficient using the green and blue part. In fact, we are dealing with a plant sensitivity curve for growth light. Plant growth (Photosynthesis) is not then determined by lux or energy, but by the photons from blue to red (400-700 nm) part of the spectrum. This is called growth light! ## Micromole and PPF Research, both at universities and applied research stations, has demonstrated that the rate of photosynthesis is determined by the amount of photons between 400 - 700 nm. In scientific terms, this growth light is called 'Photosynthetic Photon Flux (PPF) and is the only reliable measure to clarify if a light source is suitable for photosynthesis. The higher the PPF value per Watt, the more efficient the light source for plant growth. This is the reason why Philips specifies the PPF value in micromoles per second (µmol/s) for all its light sources for horticultural use. The Philips MASTER GreenPower is specially developed for maximum growth light and for this reason, is the most efficient light source available for horticulture. | (m): _=- | -49 | |----------|-----| | | | | (W=== | 41) | | HIAN Dressiire soailim | _ | Colour
temp. | Light
Output | PPF* | |---|-----|-----------------|-----------------|------------------------------| | Green Power series | | | | | | MASTER SON-T PIA Green Power
400W/230V | E40 | 2000K | 58.500 Lm | 745 µmol/s ⁻¹ | | MASTER SON-T PIA Green Power
600W/230V | E40 | 2000K | | 1100
µmol/s ⁻¹ | | MASTER SON-T PIA Green Power
600W/400V | E40 | 2000K | ran nan | 1150
µmol/s ⁻¹ | | Agro | | | | | | MASTER SON-T PIA Agro 400W | E40 | 2050K | 55.000 Lm | 660 µmol/s ⁻¹ | | Metal-halogen | | Colour
temp. | Light
Output | PPF* | |------------------------------------|-----|-----------------|-----------------|--------------------------| | MASTER HPI-T Plus 400W on SON gear | E40 | 4.000K | 38.000 Lm | 532 μmol/s ⁻¹ | | MASTER HPI-T Plus 400W on HPL gear | E40 | 4.500K | 35.000 Lm | 490 μmol/s ⁻¹ | | Fluorescent | Lamp
base | Colour
temp. | Light
Output | PPF* | |-------------------------------|--------------|-----------------|-----------------|-------------------------| | Reflex | | | | | | MASTER TL-D Reflex 36W/830 | G13 | 3000K | 3.350 Lm | 47 µmol/s ⁻¹ | | MASTER TL-D Reflex 36W/840 | G13 | 4000K | 3.350 Lm | 47 μmol/s ⁻¹ | | MASTER TL-D Reflex 58W/830 | G13 | 3000K | 5.200 Lm | 73 µmol/s ⁻¹ | | MASTER TL-D Reflex 58W/840 | G13 | 4000K | 5.200 Lm | 73 µmol/s ⁻¹ | | | | | | | | Secura | | | | | | MASTER TL-D Secura 36W/830 | G13 | 3000K | 3.200 Lm | 45 µmol/s ⁻¹ | | MASTER TL-D Secura 36W/840 | G13 | 4000K | 3.200 Lm | 45 µmol/s ⁻¹ | | MASTER TL-D Secura 58W/830 | G13 | 3000K | 5.000 Lm | 70 µmol/s ⁻¹ | | MASTER TL-D Secura 58W/840 | G13 | 4000K | 5.000 Lm | 70 µmol/s ⁻¹ | | HF | | | | | | MASTER TL-D Secura 50W/840 HF | G13 | 4000K | 5.000 Lm | 70µmol/s ⁻¹ | st These are calculated PPF values, the exact measured values will be published when available and may vary from the values given here. | Plant species | | Required
PPFD
µmol m ⁻² s ⁻ | - | Annual
irradiance
period | Irradiance
time per
day (incl.
daylight) | Purpose and method | |----------------|-----------------|---|------|--------------------------------|---|---| | Adiantum | potplants | 40 | HID | winter | 16-18 hrs | Improving vegetative growth. | | Alstroemeria | cut-
flowers | 1,5 | inc. | mid Jan
Febr. | 10 min. per
half hr | Flower advancement. | | Alstroemeria | cut-
flowers | 40 - 50 | HID | JanMarch | 14 hrs | Flower advancement, better quality, increased production. | | Anthirrhinum | seedlings | 25 - 40 | HID | winter | 14-16 hrs | Improving vegetative growth and flower advancement, approx. 4 weeks. | | Aphelandra | seedlings | 100 | TL | winter | 18-20 hrs | Raising seedlings in growing rooms. | | Aphelandra | young
plants | 5 | TL | winter | 14-16 hrs | Improving vegetative growth and flower advancement. | | Aster | young
plants | 40 - 50 | HID | JanMarch | 16 hrs,followed
by short days | Improving vegetative growth and flower advancement. Short days after buds become visible. | | Aster | cut-
flowers | 40 - 50 | HID | winter | 16 hrs | Improving
vegetative growth,
earlier flowering. | | Aspleniumnidus | potplants | 40 | HID | winter | 16-18 hrs | Improving
vegetative growth,
shorter culture
time. | | Plant species | | Required
PPFD µmol
m ⁻² s ⁻¹ | Lamp
type | Annual
irradiance
period | Irradiance
time per day
(incl.
daylight) | Purpose and method | |--|----------------------------------|--|--------------|--------------------------------|---|--| | Bedding plants | seedlings
and young
plants | 40 - 65 | HID | JanMarch | 16 hrs | Raising seedlings,
improving vegetative
growth and flower
advancement in
greenhouses and
growing rooms. | | Begonia: | stockplants | 45 - 55 | HID | winter | 16 hrs | Improving vegetative growth. | | elatior | cuttings and | 1,5 | TL | winter | 16 hrs | Flower deferment. | | Lorraine | potplants | 45 - 55 | HID | winter | 16 hrs | Improving vegetative growth, shorter culture time. | | rex | | | | | | | | rieger | | | | | | | | Bromelia:
Achmea
Guzmania
Neoregelia
Vriesia | seedlings
and young
plants | 40 - 45 | HID | SeptApril | 16-18 hrs | Raising seedlings,
improving vegetative
growth, shorter culture
time. | | Bulbs: Tulipa
Hyacinthus
Narcissus
(daffodil)
Crocus bulbs | bollen | 25 - 40 | TL/HID | DecFebr. | 12 hrs without
daylight | Flower forcing. | | Plant spec | ies | Required PPFD μmol m ⁻² s ⁻¹ | Lamp
type | Annual irradiance period | Irradiance
time per day
(incl. daylight) | Purpose and method | |-------------------------|----------------------------------|---|--------------|--------------------------|--|--| | Cactaceae | seedlings
and young
plants | 85 110 | HID | SeptApril | 16-18 hrs | Raising seedlings,
improving vegetative
growth, shorter
culture time. | | Calceolaria
hybriden | potplants | 4 | TL | mid Novmid
March | 16-24 hrs | Flower advancement. | | Calceolaria
hybriden | potplants | 40 50 | HID | mid Novmid
March | 16-18 hrs | Flower advancement, quality improvement. | | Carmellia
japonica | young plants | 45 55 | HID | SeptApril | 16 hrs | Improving quality, flower advancement. | | Campanula
isophylla | potplants | 40 50 | TL/HID | JanMarch | 16 hrs | Flower advancement, better quality. | | Chrysant | stockplants | 40 | HID | SeptApril | 18-20 hrs (incl. photoperiodic lighting) | Improving vegetative growth for good quality cuttings. | | Chrysant | cuttings | 40 45 | HID | SeptApril | 18-20 hrs (incl. photoperiodic lighting) | Improving vegetative growth for good quality cuttings. | | Chrysant | cut-flowers | 40 50 | HID | year round | 18-20 hrs (incl.
photoperiodic
lighting) | Improving vegetative growth, flower advancement, improving quality. | | Chrysant | potplants | 40 45 | HID | SeptApril | 18-20 hrs (incl. photoperiodic lighting) | Improving vegetative growth, shorter culture time. | | Cineraria | potplants | 6 | TL | from mid.
Jan. | 18 hrs | After bud formation a flower advancement of 2-4 weeks is obtained. | | Coleus
hybriden | potplants | 40 | HID | winter | 16 hrs | Improving vegetative growth. | | Columnea | potplants | 25 40 | HID | winter | 16-18 hrs | Improving vegetative growth, more and earlier flowering. | | Cordyline | potplants | 40 50 | HID | winter | 18 hrs | Improving vegetative growth, good colour quality. | | Croton | potplants | 40 50 | HID | winter | 16-18 hrs | Improving vegetative growth, good colour quality. | | Cyclamen
persicum | seedlings
and
potplants | 40 55 | HID | NovFebr. | 18 hrs | Raising seedlings and improving vegetative growth. | | Plant species | 3 | Required
PPFD µmol
m ⁻² s ⁻¹ | Lamp
type | Annual irradiance period | Irradiance
time per day
(incl.
daylight) | Purpose and method | |---------------------------------|---------------------------|--|--------------|---------------------------|---|---| | Dahlia | cut-flowers | 1,5 | TL | winter | 2 hrs during
night | Flower advancement. | | Dianthus
(carnation) | stockplants | 40 - 50 | HID | SeptApril | 14 hrs | Improving vegetative growth for good quality cuttings | | | cuttings | 40 | HID | SeptApril | 14 hrs | Improving vegetative growth and shorter culture time, rooting of cuttings. | | | cut-flowers | 1,5 - 2 | inc. | SeptApril | 16-24 hrs | Flower advancement. | | Dianthus
barbatus | cut-flowers | 40 - 50 | HID | winter | 16 hrs | Improving vegetative growth, flower advancement. | | Euphorbia:
fulgens | cut-flowers | 1,5 | inc. | AugJan. | 3 hrs during night | Improving vegetative growth, year round culture. | | pulcherrima
(Poinsettia) | potplants | 1,5 | inc. | Oct. during 2-
3 weeks | 2-3 hrs during
night | Deferring bud formation till Christmas. | | milli
(=splendens) | potplants | 5 | TL | OctApril | 16 hrs | Improving vegetative growth, year round culture. | | Ficus | potplants | 40 - 50 | HID | winter | 16-18 hrs | Improving vegetative growth. | | Forestry
products
(shrubs | seedlings
and cuttings | 55 | HID | AugMarch | 16-20 hrs | Raising seedlings and rooting of cuttings, speeding up growth. | | and trees) | young trees | 65 - 100 | HID | AugMarch | 16-20 hrs | Prevention of dormancy, speeding up growth. | | Freesia | cut-flowers | 40 - 50 | HID | winter | 16-20 hrs | Improving vegetative growth, flower advancement, more and better quality flowers. | | Fuchsia
hybrida | potplants | 6 | TL | SeptOct. | 4 hrs during
night | Flower advancement. | | Plant species | 3 | Required
PPFD μmol
m ⁻² s ⁻¹ | Lamp
type | Annual
irradiance
period | Irradiance
time per day
(incl.
daylight) | Purpose and method | |--|---|--|--------------|--------------------------------|---|---| | Gerbera | young plants | 55 | HID | winter | 16 hrs | Rooting of young plants, improving vegetative growth, shorter culture time. | | Gesnera | seedlings | 40 - 50 | HID | NovFebr. | 18-20 hrs | Raising seedlings, improving vegetative growth. | | Gladiolus | cut-flowers | 50 - 65 | HID | JanMarch | 16 hrs | Flower advancement, improving vegetative growth. | | Gypsophylia | cut-flowers | 55 - 75 | HID | winter | 16-20 hrs | Improving vegetative growth, flower advancement. | | Gypsophylia | cut-flowers | 1,5 | inc. | winter | 16-20 hrs | Improving vegetative growth, flower advancement. | | Hedera | potplants,
stockplants,
cuttings | 40 - 50 | HID | winter | 16-18 hrs | Improving vegetative growth. | | Hydrangea
macrophyla
(hortensia) | potplants | 40 - 55 | HID | from Dec. | 16-18 hrs | Improving vegetative growth. | | Hypoestes
taeniata | potplants | 40 - 50 | HID | winter | 16-18 hrs | Improving vegetative growth, good colour quality. | | Ixia | cut-flowers | 40 - 50 | HID | winter | 16 hrs | Improving vegetative growth, flower advancement. | | Kalanchoë
blossfeldiana | stockplants
and cuttings,
potplants | 40 - 50 | TL/HID | JanMarch | 18-20 hrs | Deferring bud formation, improving vegetative growth, shorter culture time. | | Kalanchoë
blossfeldiana | potplants | 35 - 50 | HID | winter | 18-20 hrs | Improving vegetative growth, shorter culture time. | | Plant species | | Required
PPFD
µmol m ⁻² s ⁻ | Lamp
type | Annual
irradiance
period | Irradiance
time per
day (incl.
daylight) | Purpose and method | |---|----------------------------------|---|--------------|--|---|---| | Liatris | cut-flowers | 40 - 55 | HID | winter | 16 hrs | Improving vegetative growth, flower advancement. | | Lilium longiflorum | cut-flowers | 35 - 45 | HID | winter | 16-24 hrs | Prevention of bud abscission, improving vegetative growth. | | Lilium M.C.
hybriden
Enchantment | cut-flowers | 50 - 65 | HID | after 6 weeks,
continuous
lighting during
4 weeks | 24 hrs during
4 weeks | After bud formation, continuous flowering and vegetative growth are improved. Shorter culture time. | | Lisianthus | cut-flowers | 50 - 60 | HID | winter | 16-18 hrs | Improving vegetative growth, shorter culture time, flower advancement. | | Lilium speciosum | cut-flowers | 1,5 - 2,5 | inc. | winter | 16 hrs | Flower advancement. | | Oriental | | 1,5 | PL | | | Flower advancement. | | Matthiola incana
(stock) | cut-flowers | 40 - 50 | HID | winter | 16-24 hrs | Improving vegetative growth, flower advancement, shorter culture time. | | Matricaria | cut-flowers | 40 - 50 | HID | winter | 16 hrs | Improving vegetative growth, flower advancement. | | Nephrolepis | potplants,
stockplants | 35 - 45 | HID | winter | 16-18 hrs | Improving vegetative growth. | | Orchis: Cattleya
Cymbidium
Cyperidium
Odontoglossum
Paphiopedilum
Phalaenopsis | seedlings
and young
plants | 45 - 60 | HID | SeptApril | 16 hrs | Improving vegetative growth, flower advancement, high-quality flowers. | | Ornamental green
plants | cuttings and
young
plants | 40 - 55 | HID | winter | 16-18 hrs | Rooting of cuttings, improving vegetative growth. | | Plant species | | Required
PPFD μmol
m ⁻² s ⁻¹ | Lamp
type | Annual
irradiance
period | Irradiance
time per day
(incl.
daylight) | Purpose and method | |---------------------------------------|----------------------------------|--|--------------|--------------------------------|---|---| | Pelargonium | stockplants | 45 - 60 | HID | winter | 16-18 hrs | Improving vegetative growth. | | Pelargonium | cuttings | 60 | HID | winter | 16-18 hrs | Rooting of cuttings,
better quality of young
plants, shorter culture
time. | | Rosa hybrida | potplants | 45 - 60 | HID | winter | 18-20 hrs | High yields,
improvement
vegetative growth,
stronger plants. | | Rosa hybrida | cut-flowers | 60 - 100 | HID | winter | 18-20 hrs | High yields of good quality flowers. | | Saintpaulia
ionantha | stockplants,
cuttings and | 40 - 50 | HID | winter | 16-18 hrs | Improving vegetative growth for production | | | potplants | 30 - 40 | HID | | 16-18 hrs | of high quality
cuttings, flower
advancement, shorter
culture time. | | Saxifraga
Cotyledon
pyramidalis | potplants | 2 | inc. | 3 weeks from mid Febr. | 3-4 hrs (night-
break) | Flower advancement,
3-4 weeks. | | Sinningia
(gloxinia) | seedlings
and young
plants | 45 - 55 | HID | NovFebr. | 16 hrs | Raising seedlings,
improving vegetative
growth, flower
advancement. | | Spathyphyllium | potplants | 40 | HID | winter | 16 hrs | Improving vegetative growth, earlier flowering. | | Succulenten | seedlings
and young
plants | 55 - 80 | HID | winter | 16-18 hrs | Raising seedlings, improving vegetative growth. | | Trachelium | cut-flowers | 45 - 60 | HID | winter | 16-18 hrs | Improving vegetative growth, shorter culture time and flower advancement. | | Plant speci | es | Required
PPFD µmol
m ⁻² s ⁻¹ | Lamp
type | Annual irradiance period | Irradiance time per day (incl. daylight) | Purpose and method | |-------------------|----------------------------------|--|--------------|--------------------------|--|---| | Aubergines | seedlings | 80 - 160 | TL | year round | 16-18 hrs (without daylight) | Seedling production in growing rooms. | | | young plants | 40 - 50 | HID | winter | 14-16 hrs | Improving vegetative growth, harvest advancement. | | Beans
(French) | young plants | 55 | HID | OctFebr. | 16 hrs | Improving vegetative growth, harvest advancement, more production. | | Beet
(various) | seedlings
and young
plants | 65 -100 | HID | SeptApril | 16 hrs | Improving vegetative growth, shorter culture time. | | Cucumbers | seedlings
and young
plants | 25 - 40 | HID | OctMarch | 16 hrs | Improving vegetative growth, shorter culture time. | | Lettuce | seed
production | 280 - 380 | HID | winter | 16 hrs | Speeding up of culture times, 4-5 times. | | | seedlings
and young
plants | 150 | HID/TL | winter | 16 hrs (growing rooms) | Improving vegetative growth, shorter culture time. | | | crop
production | 45 - 60 | HID | winter | 16 hrs
(greenhouses) | Improving vegetative growth, shorter culture time. | | Strawberries | fruit
productions | 1,5 - 2 | inc. | JanFebr. | 15 min. per hr 2 μ mol m ⁻² s ⁻¹ or 8 hrs per night continuously 1,5 μ mol m ⁻² s ⁻¹ | Flower advancement, more and better fruit production. | | Tomatoes | young plants | 45 - 55 | HID | OctFebr. | 14 16 hrs | Improving vegetative | | | fruit
productions | 150 | HID | Winter | 14 16 hrs | growth, shorter culture time (2 weeks), more and better fruit production. | | Tomatoes | seedlings
and young
plants | 300 - 380 | HID/TL | Winter | 16 hrs (without
daylight) | Production in growing rooms. |